skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Procko, Erik"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract SARS-CoV-2, especially B.1.1.529/omicron and its sublineages, continues to mutate to evade monoclonal antibodies and antibodies elicited by vaccination. Affinity-enhanced soluble ACE2 (sACE2) is an alternative strategy that works by binding the SARS-CoV-2 S protein, acting as a ‘decoy’ to block the interaction between the S and human ACE2. Using a computational design strategy, we designed an affinity-enhanced ACE2 decoy,FLIF, that exhibited tight binding to SARS-CoV-2 delta and omicron variants. Our computationally calculated absolute binding free energies (ABFE) between sACE2:SARS-CoV-2 S proteins and their variants showed excellent agreement to binding experiments.FLIFdisplayed robust therapeutic utility against a broad range of SARS-CoV-2 variants and sarbecoviruses, and neutralized omicron BA.5 in vitro and in vivo. Furthermore, we directly compared the in vivo therapeutic efficacy of wild-type ACE2 (non-affinity enhanced ACE2) againstFLIF. A few wild-type sACE2 decoys have shown to be effective against early circulating variants such as Wuhan in vivo. Our data suggest that moving forward, affinity-enhanced ACE2 decoys likeFLIFmay be required to combat evolving SARS-CoV-2 variants. The approach described herein emphasizes how computational methods have become sufficiently accurate for the design of therapeutics against viral protein targets. Affinity-enhanced ACE2 decoys remain highly effective at neutralizing omicron subvariants. 
    more » « less
  2. The serotonin transporter, SERT, catalyzes serotonin reuptake at the synapse to terminate neurotransmission via an alternating access mechanism, and SERT inhibitors are the most widely prescribed antidepressants. Here, deep mutagenesis is used to determine the effects of nearly all amino acid substitutions on human SERT surface expression and transport of the fluorescent substrate analogue APP+, identifying many mutations that enhance APP+ import. Comprehensive simulations of the entire ion-coupled import process reveal that while binding of the native substrate, serotonin, reduces free energy barriers between conformational states to promote SERT dynamics, the conformational free energy landscape in the presence of APP+ instead resembles Na+ bound-SERT, with a higher free energy barrier for transitioning to an inward-facing state. The deep mutational scan for SERT-catalyzed import of APP+ finds mutations that promote the necessary conformational changes that would otherwise be facilitated by the native substrate. Indeed, hundreds of gain-of-function mutations for APP+ import are found along the permeation pathway, most notably mutations that favor opening of a solvent-exposed intracellular vestibule. The mutagenesis data support the simulated mechanism in which the neurotransmitter and a symported sodium share a common cytosolic exit pathway to achieve coupling. Furthermore, the mutational landscape for SERT surface trafficking, which likely filters out misfolded sequences, reveals that residues along the permeation pathway are mutationally tolerant, providing plausible evolutionary pathways for changes in transporter properties while maintaining folded structure. 
    more » « less